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Abstract

One of the key benefits of future hardware implementations of certain
artificial neural networks (ANN’s) is their apparently “built-in” fault
tolerance which makes them potential candidates for critical tasks with
high reliability requirements. This paper investigates the fault-tolerance
characteristics of time-continuous, recurrent ANN’s that can be used
to solve optimization problems. The principle of operation and the
performance of these networks are first illustrated by using well-knouwn
model problems like the traveling salesman problem and the assignment
problem. The ANN’s are then subjected to up to 13 simultaneous “stuck-
at-1” or “stuck-at-0” faults for network sizes of up to 900 “neurons.”
The effect of these faults on the performance is demonstrated and the
cause for the observed fault tolerance is discussed. An application
is presented in which a network performs a critical task for a real-
time distributed processing system by generating new task allocations
during the reconfiguration of the system. The performance degradation
of the ANN under the presence of faults is investigated by large-scale
simulations, and the potential benefits of delegating a critical task to a
fault-tolerant network are discussed,

1. Introduction

In spite of the fast-growing complexity and power of modern computer technology, there are
a number of tasks in information processing that seem to be inherently difficult if not intractable
for conventional computer systems. These are tasks like pattern recognition, nonlinear adaptive
control, or autonomous navigation that are routinely mastered not only by humans but also by
much “simpler” biological systems. The principles of biological information processing appear to
be completely different from the way that conventional computers operate. This might explain
why computers have such difficulties with tasks from the “biological domain” and vice versa.
Current research in neural networks addresses these issues and seeks to explore and understand
these principles of biological information processing. Recent years have seen an immense growth
in those activities, which produced a variety of abstract models called artificial neural networks
(ANN’s) that are inspired by and loosely based on our current understanding of the operation
of simple biological systems.

Although most ANN’s bear little resemblance to real nervous systems and do not actually
claim to be biologically plausible, they try to incorporate some of the key aspects of biological
information processing. These are, for example, the capability to learn and to adapt to
environmental changes, the distributed storage of information, and an architecture based on
many simple computational units (model “neurons”) that are interconnected and operate in
parallel. Several dozen distinct types of ANN’s exist that have been developed for specific
purposes, but a survey or classification of these types is beyond the scope of this paper. A general
introduction into so-called neural computing can be found, for example, in work by Kohonen
(1988); Pao (1989); Rumelhart, McClelland, and PDP Research Group (1986); Wasserman
(1989); and Zornetzer, Davis, and Lau (1990).

We are especially interested in another very intriguing characteristic of biological as well as
artificial neural networks, that is, their apparently inherent fault tolerance. The fault tolerance of
conventional systems is a carefully calculated design goal that requires some form of hardware or
software redundancy which increases the complexity of the system. That is, it is always possible
to build a simpler system without the redundancy, and this system has the same performance
under fault-free conditions as the fault-tolerant system. In contrast, the fault tolerance of neural



networks seems to be inseparable from their functional characteristics and is neither planned nor
can it be removed. This fault tolerance has been demonstrated for various ANN’s, but only as a
side effect and without a systematic investigation of the underlying causes. (See Anderson 1983;
Sejnowski and Rosenberg 1986; Hinton and Sejnowski 1986; Hutchinson and Koch 1986.) A few
studies focused more explicitly on the fault tolerance (Hinton and Shallice 1989; Belfore and
Johnson 1989; Petsche and Dickinson 1990), and we will discuss their approaches and results in
section 5.

In this paper we will investigate a particular ANN model that was published by Hopfield
in 1984 and can be used to solve certain optimization problems. In the following discussion
we will adopt the term optimization networks for these ANN’s, a term that was coined by
Tank and Hopfield (1986). The network can be implemented as an electronic circuit with
nonlinear operational amplifiers representing the neurons and feedback connections between
the amplifiers. The resulting complex, nonlinear dynamical system has many different stable
states that represent local energy minima. If the system is properly designed, then these stable
states correspond to the solutions of a target optimization problem. Thus, the system “solves”
the optimization problem by converging from an initial state with partial information about the
solution to a local energy minimum that corresponds to a good, if not the best, solutiomn.

Although optimization networks were initially applied to classical problems like the traveling
salesman problem, we are more interested in potential applications.in real-time processing and
control systems. For example, an optimization network implemented in analog hardware could
perform a real-time scheduling or control task as a component of a hybrid system. If this is a
critical task with high reliability requirements, then the allegedly “built-in” fault tolerance of
the neural network becomes a key factor. With such applications in mind, we will investigate the
fault tolerance of optimization networks and quantify the performance degradation in simulated
“fault-injection” experiments. A broader goal is to gain insight into the principal character of
the fault tolerance of these neural networks and to explore the underlying cause.

The following two sections of this paper contain a comprehensive introduction to optimization
networks. Section 2 describes the architecture and equations that govern the dynamics of the
network. The principle of how to solve an optimization problem by “mapping” it onto the
network is explained in section 3 for two example problems, the assignment problem (AP) and
the traveling salesman problem (TSP). Readers who are already familiar with the operation of
optimization networks might want to skip these introductory sections and start with section 4
which introduces a performance measure that allows a meaningful assessment of how well the
network actually solves the AP and TSP. Such a performance measure is a prerequisite for
quantifying the performance degradation in the presence of simulated faults that are “injected”
into the network. Section 5 presents these results for the AP and TSP that are used again
as model problems and discusses the cause and effect of the observed fault tolerance. Finally,
section 6 describes an application in which an optimization network is used for the real-time task
allocation in a fault-tolerant, distributed processing system. The network is a critical component
in this application and its fault tolerance is an essential requirement for the operation of the
system. Thus, we will again illustrate how this network performs under the presence of faults
and quantify the performance degradation in large-scale simulations. The concluding remarks
in section 7 summarize the main results and discuss the prospects of optimization networks for
different application areas.

2. Optimization Networks

In 1982, Hopfield introduced a network of interconnected model neurons that function as an
associative memory with stable states corresponding to stored binary patterns. The development
of this model was inspired by the observed behavior of certain physical systems that exhibit
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collective phenomena, such as stable magnetic orientations, as a result of the interactions among
a large number of elementary components. This associative memory model is often referred to
as Hopfield’s discrete model because it uses two-state (binary) neurons and is discrete in time
as well as in state space. As an extension of this work, Hopfield (1984) proved the stability
of a time-continuous model that has stable states corresponding to the discrete model and can
be realized in hardware by an analog electronic circuit with operational amplifiers. This model
attracted much attention, especially after Hopfield and Tank demonstrated in 1985 how it can
be used to solve hard optimization problems like the TSP.

Figure 1 shows a general optimization network in the form of an electrical circuit model
(Hopfield and Tank 1985) with n interconnected amplifier units (neurons) as the active circuit
elements. The model allows resistive feedback from any output V; to any input u; with a resistor
value R;; or a conductance T;;=1 /R;;, respectively. The current I; can be used to provide an
external input to the network. The nonlinear, sigmoidal transfer function that determines the
relation between an input u; and an output V; is given by

1 U; — Ug \ 1
Vi==|l4+tanh | 2—)| = 1
’ 2[ “‘“( w0 ﬂ 1+ exp [~ 4 (u; — us)] M
where
o Lo
QUQ dui uj=us

The parameter A denotes the slope of the transfer function at the inflection point u; = us and
constitutes the maximum gain of the amplifier. This transfer function is depicted in figure 2 for
a particular choice of the parameters A and us. The offset us is sometimes explicitly used as an
additional parameter (Brandt et al. 1988), but it can be incorporated into the current I; which
has also the effect of shifting the transfer function horizontally.
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Figure 1. Circuit diagram of optimization network according to Hopfield (1984). Note that negative fecdback can be
realized by connecting positive conductances T;; to negative output —V; of unit (not shown in this figure).

Positive and negative feedback connections, which correspond to excitatory and inhibitory
synapses in biological neurons, respectively, can be mathematically described by positive and
negative values for 7;;. Here, T;; is commonly referred to as the weight of the connection between
the output of unit j and the input of 7. In an electronic circuit realization, T;; = 1/R;; can only
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Figure 2. Nonlinear transfer function of unit. Shift us = 0.5; Gain A = 2.5; V; = T exp[~41/\(u Ik

be positive, and negative feedback requires the use of an additional output —V; for unit i ranging
from 0 to —1. Connecting R;; to the negative output realizes negative or inhibitory feedback.
The intrinsic delay exhibited by any physical amplifier as well as by a biological neuron is
modcled by an input resistance r; and capacitance C;. These are drawn as external components
in figure 1 so that the actual amplifier can be described as an ideal component with no delay.!
A circuit analysis of the network in figure 1 yields the “equations of motion”

du; u; =
i#z_é+ZEj‘/}+Ii (2)

j=1

that describe the time evolution of the dynamical system where ¢ denotes time. (Appendix A
shows in detail how this circuit analysis is performed.) In equation (2), R; represents the
parallel combination of the input resistance r; and all the weights T;; = 1/R;j connected to
unit 7 according to

L1 ’
R; 7 i i

Equation (2) is usually simplified by assuming? that R; = R and C; = C for all units 1.

Hopfield (1984) proved the stability of the nonlinear dynamical system in equation (2) for
symmetric connections (T;; = Tj;). By introducing a Liapunov function, he showed that in the
high-gain limit (A — o) the stable states of the system correspond to the local minima of the
quantity

1 n n n
E=-23 > TiViVi - ) Vil (@)
=1

i=1j=1

which Hopfield refers to as the computational energy of the system. This means that the
dynamical system moves from an initial point in state space in a direction that decreases its

! This is, however, an idealized model of a practical amplifier according to Smith and Portmann (1989). More realistic
models might lead to instability of the system. (See also Marcus and Westervelt (1989).)

Z Note that the assumption of a constant R; is difficult to realize in practice because different values for the input
resistances 7; would have to compensate for variations of the sum of the weights according to equation (3). These variations
are considerable if problem-specific data are encoded in the weights as in the case for the TSP.
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energy in equation (4) and comes to a stop at one of the many local minima of the energy
function. A detailed discussion of this stability proof and the underlying assumptions can be
found in appendix B.

Grossberg (1988) showed that the Liapunov function in equation (4) for the system in
equation (2) is a special case of a more complex Liapunov function introduced by Cohen and
Grossberg in 1983, so that equation (4) might not be considered as a new result in itself.
Nevertheless, this does not diminish Hopfield and Tank’s (1985) main contribution, which can
be seen as their method of associating the equilibrium states of the network with the (local)
solutions of an abstract optimization problem like the TSP. This method is reviewed in the next
section.

3. Solving Optimization Problems: Principle of Operation

This section describes in detail how the dynamical behavior of the network can be used to
solve certain optimization problems. In order to map an optimization problem onto the network,
a suitable representation has to be defined and the network parameters T;; and I; have to be
derived from a suitable mathematical description of the problem. Section 3.1 illustrates the
basic principles by using a simple constraint satisfaction problem, which does not include a
cost function but constitutes an important building block. Sections 3.2 and 3.3 then describe
how a network can be used to solve two well-known optimization problems, the assignment
problem (AP) and the traveling salesman problem (TSP).

3.1. Problem Representation and Constraint Satisfaction

The basic idea behind the operation of optimization networks can be stated as follows: If it
is possible to associate the solutions of a particular optimization problem with the local minima
of the energy function in equation (4), then the network solves the problem automatically by
converging from an initial state to a local minimum, which in turn corresponds to a (local)
solution of the problem. This association requires a suitable problem representation, that is,
an encoding of the problem by using the state variables V; of the network. For example, the
output V; of a unit ranging from 0 to 1 can be used to represent a certain hypothesis that is
true for V; = 1 and is false for V; = 0. Different hypotheses can be encoded by different units
and the hypotheses might have to satisfy certain constraints. If the final state of the network is
supposed to represent a particular solution, it is usually required that the outputs V; eventually
converge to either 0 or 1 in order to obtain a decision. In this sense, the process of convergence
with intermediate values 0 < V; < 1 could be interpreted as the simultaneous consideration of
multiple, competing hypotheses by the network before it scttles into a final state (Tagliarini and
Page 1987).

A typical “building block” of optimization networks is a one-dimensional array of units that
represents a set of n hypotheses under the constraint that only k& out of n hypotheses can be
true. Page and Tagliarini (1988) used this example to illustrate the basic principle of mapping
a problem onto an optimization network. Mathematically, the problem can be stated as

k(2
D Vi=k (5)
i=1
where
V; €(0,1)

so that exactly k out of n units are “turned on” in the final state (k < n). Note that V; in
equation (5) is a binary variable limited to the values 0 and 1. The mapping requires that

5



equation (5) be in the form of a quadratic function so that the minima of that function can
represent the solutions to the problem. In this example, we can define the problem-specific
“energy function” Ej ,, as

n 2 n
En=(§jw—k) +Y Vi(1-Vp) (6)
=1

=1

The first term in equation (6) has minima for all combinations of V; for which the sum of the V}
is equal to k, but this alone is not yet equivalent to equation (5) because the additional condition
Vi € (0,1) has to be explicitly enforced. This is done by the second term in equation (6), which
has its minima at points where V; is either 0 or 1. After expansion of the quadratic term using

the relation 5
(Z Vi) =22 Wi

equation (6) can be rewritten as

ZZVV ZVQ ZV(Qk—1)+k2 (7)

=1 j=1

The term k? is independent of V; and represents only a scaling factor that can be omitted without
loss of generality because the absolute value of Ej ,, is irrelevant in this context. After some
further rearrangement, we get

:__Zz—z 6ij) ViV; — ZV(Qk—l) (8)

i=1j=1 =1

with §;; denoting the Kronecker symbol (é;; = 1 for i = j, but 0 otherwise).

Mapping a problem onto the optimization network is equivalent to determining the network
parameters T;; and I; by comparing the Liapunov function of the network (eq. (4)) with the
problem-specific energy function. In our example, setting E = FE} ,, identifies the solutions of
the problem (minima of Ej ,) with the stable states of the network (minima of E). With
Ey ., expressed as in equation (8), it can be seen that equations (8) and (4) are equal if
T;; = —2(1 — é;;) and I; = 2k — 1. This means that a network with n units and these parameters
converges from any initial state to a final state in which k& out of n outputs are on (V; = 1) and
all other outputs (k — n) are off (V; = 0).° Figure 3(a) illustrates the resulting architecture, and

figure 3(b) shows a more abstract, equivalent representation of the same network.

This kind of connectivity with negative feedback connections from every unit to every other
unit is also called lateral inhibition. In this case, there is no negative feedback from a unit to
itself, or no self-inhibition. Each unit ¢ acts to inhibit all the other units with a negative feedback
signal, which has a strength proportional to its current output V,. Because all the units seem
to compete with each other, these networks with lateral inhibition are also called competitive
networks. Thus, the units that are on after the network reaches a stable equilibrium state are
the winners of the competition.

Which unit converges to an on state and wins the competition depends solely on the initial
values of u;. The time evolution of the network as described by the equations of motion requires

3 Strictly, the values V; = 0 and V; = 1 are reached only in the limit because of the characteristics of the sigmoidal transfer
function; for practical purposes, it is sufficient to stop the simulation if V; > 0.95 or V; < 0.05, respectively, for all units 7.
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(a) Circuit level model of network with stable equilibrium states (b) A more abstract repre-
in which k out of n units are on (V; = 1) and k — n units sentation of same net-
are off (V; = 0). work.

Figure 3. Two architectural representations of a network.

the specification of initial values for u;, which can be regarded as another set of inputs to
the network in addition to the external currents I;. Because of the symmetric connectivity and
identical values of all weights and of all I;, the network has an unstable equilibrium point (“saddle
point”) at u; = 0 for all units ¢, which is equivalent to V; = 0.5 for all ¢. Thus, an initialization
with u; = 0 for all ¢ would result in no “movement” at all and would prevent the convergence
of the network to any of the stable equilibrium points. Furthermore, an initialization with the
same constant value (not necessarily 0) for all u; would result in a movement to the unstable
equilibrium point u; = 0 for all 7. This characteristic might be visualized by imagining the three-
dimensional surface of a “saddle” with the one special curve that has a gradient pointing exactly
to the (unstable) center of the saddle. (See appendix B for an illustration.)

If the initial inputs u; do not have all the same values, then those k units with the initially
largest values of u; (and hence of V;) suppress the other units more strongly, are less suppressed
by the other units, and thus “grow even stronger” and eventually win the competition. In the
n-dimensional state space spawned by the u;, this amounts to a convergence from an initial
point to the closest equilibrium point. These networks are also called k-winner-take-all networks
because only the % initially strongest units converge to an on state and all other units are reduced
to an off state. This characteristic can be used for contrast enhancement in signal processing
applications (e.g., vision), and networks that use these or similar principles of competition and
lateral inhibition can be found in different artificial as well as biological neural networks. For
k =1, the network in figure 3 is simply called a winner-take-all network, and the special case of
n =2 and k =1 is equivalent to the well-known “Flip-Flop,” which is a bistable memory with
one unit on and the other unit off or vice versa.

The network analyzed above realizes only the satisfaction of constraints and does not include
a cost function, which usually describes an optimization problem. The following sections
investigate two classical examples of optimization problems, the assignment problem and the
traveling salesman problem.

3.2. The Assignment Problem

The assignment problem (AP) has different variations depending on the definition of con-
straints and cost. The AP used for this example is a simple version, sometimes also called a
list-matching problem, with the following specification. Given two lists of elements and a cost
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value for the pairing of any two elements from these lists, the problem is to find the particular
one-to-one assignment or match between the elements of the two lists that results in an overall
minimum cost. In order to distinguish clearly between the two lists, we use capital letters to
describe the elements of one list (i.e., X = A, B, C, etc.) and enumerate the elements of the other
list (i.e., i = 1,2,3,etc.). Additionally, we assume that the two lists contain the same number of
elements 7. A one-to-one assignment means that each element of X has to be assigned to exactly
one element of i. The cost py; for every possible assignment or pairing between X and i is given
for each problem instance. This generic problem description has many practical applications,
for example, the assignment of jobs 7 to processors X in a multiprocessor system by minimizing
the cost of the communication overhead.

The AP as specified above can be represented by a two-dimensional quadratic matrix of units
whose outputs are denoted by Vx;. Thus, we can define Vx; as a decision variable, with Vx; =1
meaning that the element X should be assigned to the element 7, and Vy; = 0 meaning that the
pairing between X and ¢ should not be made. This way, a solution to the AP can be uniquely
encoded by the two-dimensional matrix of the outputs Vx; after all units converge to 0 or 1.
Note that n? units are required to represent an AP with n elements per list. The constraints
of the one-to-one assignment require that only one unit in each row and column converge to 1
and that all other units converge to 0. Thus, the outputs of the network after convergence
should produce a permutation matriz with exactly one unit on in each row and column. Figure 4
illustrates this representation by showing the cost matrix as the input for a particular problem
instance and the output of the network after convergence. In this example, the output matrix
determines the assignment of elements A to 7, B to 1, C to 6, etc.

i i —»
X 1 2 3 4 5 6 17 1 23 45 6 17
lA 68 68 93 38 52 83 4 / .@ Af000000O1I
B| 65367 138 7 42 é %gg B/1000000
c | 68 59 93 84 53 10 65 A4 bl c{[0000010
pl 4270091762 5 73 ﬁ. ‘ pDl0O0O0OOT 0O
E | 33 63 75 99 37 25 98 %?% % . E|0100000O
F |\ 727565 8 6388 27 2 § Fl0001000
G \44 76 48 24 28 36 17 : Gl0010000
Cost matrix Optimization network Output matrix

Figure 4. Exemplary cost matrix for 7 x 7 assignment problem and corresponding output matrix generated by neural

network. Here, the solution encoded by output matrix is optimal with overall cost ¢ of 165.
Mathematically, the constraints can be expressed as

» Vxi=1 (9a)
X

for all units 7 and as

> Vxi=1 ~ (%)

for all elements X with Vx; € (0,1). Assuming that the constraints are satisfied, the overall
cost ¢ of a particular solution becomes simply

c=Y > pxiVxi (10)
X



This summation over the whole matrix includes only the cost for the n terms for which Vx; =1,
which represents the overall cost of the assignment. In the example of figure 4, the overall cost
is ¢ = 165, and it can be verified that this is actually the minimal cost of all possible solutions.

For the mapping of this problem formulation onto the optimization network, the relations
in equations (9) and (10) are included in a quadratic function with minima representing the
solutions of the problem. This is a generalization of the “winner-take-all” problem discussed
in the last section with the augmentation that the AP requires a two-dimensional network and
includes a cost function. The energy function

o= S () 3(pr)

i

+ % SS Vki(-Vx)+ DYDY pxiVxi (11)
X i , X i

used by Brandt et al. (1988) is such a quadratic function. The first two terms in equation (11)
have minima if the sum over all outputs equals 1 for each row and each column, respectively.
The third term has minima if all Vx; are either 0 or 1, and together with the first two terms, it
enforces the constraints according to equation (9). The fourth term in equation (11) is simply the
overall cost of a particular solution (eq. (10)) given that the constraints are met. Furthermore,
it is common to use constant factors A, B, C, and D (not to be confused with the row indices
A, B, C, and D of a list as in fig. 4) as additional parameters in equation (11). These parameters
have the effect of weighting the constraints and the cost function and allow a fine tuning of the
performance as will be seen later.

Equation (11) creates an energy landscape in n2-dimensional space with local minima
corresponding to all possible solutions to the problem, i.e., all permutation matrices. However,
unlike in the winner-take-all problem, the local minima now have different depths determined
by the cost of a particular solution. The energy minimum corresponding to the smallest cost
value (best solution) is called the global minimum.

The next step in mapping equation (11) onto an optimization network is the derivation of
the values for the connections and external inputs. First, we have to extend the notation of the
Liapunov function (eq. (4)) to two dimensions:

E = _% ZZ ZZTXi,YjVXiVYj — ZZVXiIXi (12)

Now, Tx; y; and Ix; can be derived by setting E in equation (12) equal to Epp in equation (11).
The algebraic calculations are analogous to the case of the winner-take-all problem, albeit
somewhat more complex. An expansion of equation (11) results in

Exp = gZZZVXiVXj-I-l—;“ZZZVXiVYi_%ZZV)%i
X i j X i Y X i

-k (4+B- G - Do)+ 54+ D) (13)
X 1



The constant scaling term %(A + B) can be omitted because the absolute value of Epp is
not important. By using the Kronecker symbol §;; (where §;; = 1 for i = j, but 0 otherwise),
we can express Fap as

B C

Eap= ) Y Y N vxiWy (‘% Sxy +5 8- o 5XY5ij>
X i Y j
_ZZVXi (A+B~%—DpXi) (14)

X i
By comparing equations (12) and (14) it can be seen that £ = Eap if

Txiy; = —Abxy — Bbijj + Coxybi;
C (15)
Ixi=A+B— o — Dpx;

Figure 5 presents a sketch of the resulting network architecture. We can distinguish between
three different types of connections: (1) lateral inhibitory connections between different units
within the same row (X =Y, # j) with the value Tx; x; = —A, (2) lateral inhibitory connec-
tions between different units within the same column (X # Y,¢ = j) with the value Tx; y; = —B,
and (3) feedback from a unit to itself (X =Y,i = j) with the value Tx; x; = —A— B+ C. The
external current includes a constant term A + B — (C/2) as well as the problem-specific cost
values px;.

C
Nine external currents (/ y; = A+B- 7" Dpy;)

are shown by arriy

Feedback

from a unit

to itself

(Txixi =-A-B+C) —
Lateral
inhibitory
connections
within a
column
Txiyi =-B)

Lateral inhibitory connections
within a row (T, Xj = -A)

Figure 5. Schematic architecture of two-dimensional neural network with connectivity required to solve assignment

problem.

The operation of the network can be simulated by solving the equations of motion (eq. (2)),
which take the general form

dux; ux;
Oxi —2t = =222 43> Txiy Vs + Ix (16)
dt Ry, Y
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for a two-dimensional network. With the specific values from equation (15), the equations of
motion for the AP become

duxi ux;
CXi 7 = —R—Xi - AZJ:VXJ' - Bzy:VYi + CVyx;

+A+B——§——DpXi (17
These equations represent a system of nonlinear ordinary differential equations (ODE’s) that
can be solved by any of the standard numerical methods. (See, e.g., Press et al. 1986.) Because
the system in equation (17) proved to be numerically quite robust, the simple Euler method is
sufficient as long as the stepsize At is small enough. The values for all the parameters used in
our simulations are given in section 4 where the performance of the network is discussed.

Solving equation (17) requires the specification of initial values for all values of ux;. Unlike
the winner-take-all network, the AP network in figure 5 does not have an unstable equilibrium
point (saddle point) at ux; = 0 because the different cost values px; encoded in the current Ix;
break the symmetry and the network converges from uy; = 0 to one of the stable states. Since
we do not assume any prior knowledge of the desired solution, the initialization at ux; = 0
represents an unbiased choice because it does not favor any of the stable states.

Clearly, the goal in operating the AP network is the convergence from an initial state to
the global minimum rather than to some local minimum. Unfortunately, this can be neither
guaranteed nor predicted because of the complexity of the nonlinear dynamics. Each equilibrium
point has a basin of attraction which reflects the shape of the local minimum of the energy
function in the high-dimensional state space. The basins of attraction are determined by the
connections, the current Ix;, and the shape of the transfer function V; = f (u;). For the winner-
take-all network, all stable states have identical basins of attraction, and the final state after
convergence is solely determined by the initial value. The AP network has different basins of
attraction because of the different cost values py; associated with the stable states representing
a solution.

The parameters A, B, C, and D can be used to shape the basins of attractions and thus
influence the convergence, but there is no theory that could prescribe specific values to achieve
a desired result. Thus, suitable values for the parameters A, B, C, and D as well as for
the gain and offset of the transfer function have to be found experimentally. It is relatively
easy to find an optimal set of parameters for one particular problem instance. However, the
same parameters might perform poorly for a different problem with a new cost function that
determines a different shape of the basins of attraction. Therefore, it is necessary to find a set
of parameters that performs well for a variety of problem instances. This experimental process
of adjusting the parameters to optimize the performance requires a number of test cases for
which the best solution is known. These questions concerning the performance assessment are
discussed in section 4.

3.3. The Traveling Salesman Problem

The traveling salesman problem (TSP) was the first example chosen by Hopfield and Tank
(1985) to demonstrate how a neural network could be used to solve optimization problems. The
task of the traveling salesman is to visit n cities in a closed tour in such a way that the overall
length of the tour is minimal. Each city can be visited only once, and the distance between
any two cities is given. The TSP is a classical, NP-complete optimization problem (Garey and
Johnson 1979) for which no algorithm exists that could find a (global) solution in polynomial
time. Hopfield and Tank’s TSP example achieved such prominence because it was one of the first
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examples of a neural network solving a problem that is intractable for conventional computers.
However, as we will discuss later, the TSP was meant and should be regarded as an ezample
only, and it does not suggest that a general method has been discovered that solves NP-complete
optimization problems.

The problem representation for the TSP is similar to the AP and requires a two-dimensional
network with outputs Vx;. The difference is that the first index (X) now denotes a city, and the
second index (i) describes the order in which a city is visited along the tour. The representation
of a problem with n cities requires a quadratic matrix of n2 units whose outputs Vx,; should
converge to binary values. We define Vx, =1 as the decision that city X should be on the
1th position of the tour. Conversely, Vx; = 0 determines that city X should not be on the ith
position. With this definition, a tour can be encoded and the problem can be solved as illustrated
in figure 6. First, the distances dxy between any two cities X and Y have to be derived from
the city locations, which are randomly distributed on a unit square in the example in figure 6.
The distance matrix is then provided to the optimization network whose outputs converge to
values that allow the decoding of a tour. In figure 6, for example, the output matrix determines
that city C is in the first position of the tour, city F in the second position, etc., which prescribes
the tour C-F-D-G-E-B-A-C.

Cities Y — Position 1 —»
X A B CDE FG 1 23 456 7
lA 0 .30 .48 .82 .56 .44 .57 AJ/0O0O0O0O0O01
B { .30 0 49 .54 35.27 .27 B{0OOOOOT10
c| .48.49 0 .73 .84 .30.60 c{1000000O0
D! .82.54.73 0 .60.46.28 D| 001 O0O0O0O0
E | .56.35.84.60 0 .58 .37 E{ 0000100
F | .44 .27 .30 .46 .58 0 .30 F10100000
G \.57.27.60.28.37.30 0 G \0001000
Distance matrix (cost) Optimization network Output matrix
& ) City map f]
) E
@ b G @
Generate distances dyy Decode tour
from city distribution
B
F
A
C

Figure 6. Example of traveling salesman problem (TSP) and representation of a tour by the outputs of the
optimization network after solving the problem. The resulting tour has a length of 2.54.

Since the TSP requires a closed tour, it actually does not matter where the tour starts or
in which direction the tour is traversed. Thus, the output matrix in figure 6 is not a unique
description of the tour and shifting the columns to the left or to the right leads to the same
result. In general, the problem representation has a 2n-fold degeneracy because n matrices exist
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for each of the two directions of traversal that encode the same tour. Although this degeneracy
might seem undesirable, a more compact or unique representation is not known in this context.
Furthermore, the redundancy introduced by this degeneracy has interesting implications for the
fault tolerance of the network, as will be shown in section 5.

The requirement of the TSP that each city has to be visited exactly once can be rephrased such
that each city can be in only one position of the tour and each position can be occupied by only
one city. Thus, the constraints are met if the outputs of the network converge to a permutation
matrix with only one 1 in each row and column. This means that the mathematical expression
of the constraints in the form of a quadratic function is identical to the one derived for the
assignment problem. The cost function for the TSP is the overall length [ of a tour that should
be minimized. The tour length can be expressed as (Hopfield and Tank 1985)

1
= 5222‘1”‘% (Wir1 + Wic1) (18)
i X Y

with dxy denoting the distance between city X and city ¥ (dxx = 0). The subscripts ¢
describing the position are defined modulo n (i.e., Vy;;, = Vy,;) in order to express the fact
that a city in position n of the tour is adjacent to the city in position 1. Given that the constraints
are met, the triple sum in equation (18) actually results in twice the overall tour length and
is thus d1v1ded by 2. Equatlon (18) can be illustrated by the example in ﬁgure 6. Starting at
position 7 = 1, the first term is g(d(;p + d¢ 4), the second term for ¢ = 2 becomes Q(dFD +dpe),
etc. Thus, the summation includes the distances between a city in a given position and both
its neighbors on the tour. The reason for including both Vy ;4 and Vy;_; in the summation
in equation (18) is that it leads to symmetric connection values in the optimization network, as
we will see below. This symmetry is a necessary condition for the stability of the network. (See
appendix B.)

Except for the different cost function, the energy function for the TSP is identical to that of
the AP and can be written as (Brandt et al. 1988)

2 2
Ergp1 = Z(ZVXz ) +§Z(ZVX1‘—1> +%ZZVXi(1_VXi)
i \Xx X i
Tt ZZZ dxyVxi (Vyis1 + Vyio1) (19)
X Y i

The mapping of equation (19) onto the Liapunov function (eq. (12)) of the network requires
calculations similar to those shown for the AP in the last section and results in the following
network parameters:

Txiyj = —Abxy — Béij + Cbxyéij — Ddxy (641 + 6ji-1)

Xi = A+ B - g (20)

2

The principal difference between the TSP connectivity in equation (20) and the AP connectivity
in equation (15) is that the TSP cost function is encoded by the connections T'y; y; and not by
the external current Ix,;. The architecture of the TSP network is identical to the AP network
as illustrated in figure 5, except that the TSP network has a constant Ix; and the additional
connections Tx; y; = —Ddxy (6511 + 8;;-1). These connections that encode the cost function
describe a link between a unit X: and its neighbors in the two adjacent columns Y, i+1 and
Y, :—1 with the strength —Ddxy. Because of the modulo n definition of the position index,
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the connections wrap around the network by connecting the first and the nth columns. A small
distance between the cities X and Y, for example, is reflected by a weak inhibition between the
units X1, Y, ¢+1, and Y, i—1 which establish a link between X and Y in the tour if Vx; = 1 and
Wiit1 =1, or Vx; =1 and Vy;_1 = 1, respectively. Thus, two cities with a large distance lead
to a strong inhibition between all units that could establish a link between these cities in the final
tour. This competition, which favors short links to minimize the cost and leads to convergence
to an overall valid tour to satisfy the constraints, occurs simultaneously in the network through
the interaction of all units.

The equations of motion that describe the dynamics of the TSP network are

dux; Ux;
Cxi — = — X AN Vy; ~BY Wy +CVy;
dt Ry; 5 v

C
=D dxy (Wt1+ V1) + A+ B - 3 (21)
Y

The parameters A, B, C, and D, together with the gain and the offset of the transfer function,
can be used to fine tune the performance by shaping the basins of attraction as discussed in the
previous section. Initial values for the uy; have to be specified in order to solve equation (21)
numerically. The value uy; = 0 for all X7 represents an unbiased choice, but unfortunately the
TSP equation (21) has an unstable equilibrium (saddle) point at ux; = 0. This is caused by
the symmetry of the connections and, unlike the AP, by an identical external current for each
unit. Unfortunately, any nonuniform initialization implies a bias toward a particular solution.
Since we do not assume any prior knowledge that could be used in the form of a bias, the only
solution is to keep this bias as small as possible. Thus, we use initial values uy; + §, where § is a
random variable that is uniformly distributed in the interval —107% < § < +10~6. Although the
random bias is fairly small, we can observe different solutions for different random initializations.
This complicates the performance assessment because it requires more simulations to derive an
average performance over different random initializations.

Originally, Hopfield and Tank (1985) proposed a different energy function for the TSP that
used an alternative formulation to enforce the constraints. Their original TSP energy function
was

' 2
Brsm= 320 S ViVt 5 0 3 Vi + 5 (ZZVn—n)
X 1

X i j#i i X Y#X

D
t3 D3> dxyVxi (Win + Wic1) (22)
X Y i

The first two terms in equation (22) have a minimum (besides the trivial case Vx; = 0 for all X7i)
if all cross products Vx;Vy; for i # j within a row vanish and Vx;Vy; for X # Y within a column
vanish. This is the case if there is only one nonzero output in each row and column. The third
term in equation (22) has a minimum if the sum over all outputs equals n. Together with the first
two terms, this determines an overall minimum if the outputs represent a permutation matrix.
The mapping of equation (22) onto the Liapunov function (eq. 12)) results in the values

Txiy; = —Abxy — Bbj + (A+ B)8xy 85 — C — Ddxy (8ji1 +65:-1) } 23)
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and in the corresponding equations of motion

Cx; M=—ﬂ—AEVXj—B Y Wi -0 > Wy
dt Rxi A Y#X Y

- D> dxy (W1 + Vyi1) +Cn (24)
Y

The main difference between Hopfield and Tank’s original formulation (egs. (22)-(24)) and
the modification (egs. (19)—(21)) is the global inhibition term —C in Hopfield and Tank’s
equation (23) as well as an external current term that depends on the problem size n. Global
inhibition means that there is an inhibitory connection from every output to every other input
with a connection strength C in addition to the lateral inhibition within each row and column
of strength A and B, respectively. This global connectivity results from the global formulation
in equation (22), which states that the sum of all outputs should be equal to n. In contrast, the
energy function in equation (19) uses only local rules when it requires that each output should
converge to either 0 or 1.

Although both approaches seem to be equivalent in the sense that both enforce the conver-
gence to a permutation matrix while using an identical cost function, their performance turns
out to be considerably different. In trying to recreate Hopfield and Tank’s original results, many
people have reported poor results; that is, either the network failed completely to converge to a
valid tour (permutation matrix) or the solution was clearly far from the global optimum. (See
Wilson and Pawley 1988; Van den Bout and Miller 1988; Hedge, Sweet, and Levy 1988.) These
problems do not occur when the alternative formulation of the energy function in equation (19)
is used (Brandt et al. 1988). However, the performance still depends strongly on the parameter
values, on the initial values, and on the cost function of the underlying city distribution.

Before we address the difficulties of a quantitative performance assessment in the next section,
we want to illustrate the behavior of the network in solving two 10-city distributions. For these
examples, we used Brandt’s equations (eqs. (19)-(21)) with the parameters A = B =2, C = 4,
D=1, A=25, and us = 0.5. The equations of motion are solved by Euler’s method with
At = 0.1. The values for C; and R; are normalized to 1 without loss of generality. Figure 7
shows the two 10-city examples and the network in its initial state (Vx;);=0 = 0.5 + 6 with ¢ as
a small random bias (—107% < § < +1076). The output value Vy; of each neuron is represented
in figure 7 by the size of the black square. This becomes more apparent in figures 8 and 9 which
show the outputs of the network after convergence together with the corresponding tours.

An important point to emphasize is that the different solutions in figures 8 and 9 are caused
only by different initial values and not by any other parameter variations. This illustrates
the strong impact of the (unavoidable) random bias, even if it is very small. The examples
also illustrate that the solutions of the network with the exception of figure 9(c) are indeed
suboptimal. However, the subjective (visual) impression of a bad tour is not always reflected
by a large tour length. An obviously poor solution with a twist as in figure 8(c) has a length
of 2.83, which is quite close to the global optimum of 2.71. As we will discuss later, it is possible
to improve the performance for specific cases by fine tuning the parameters, but this can lead to
invalid answers in other cases. The parameters used here are not optimized for these examples
but produce consistently valid solutions according to the results of the next section.

Finally, figure 10 shows the time evolution of a network in different snapshots during the
convergence. Because of the mutual inhibition, the outputs quickly decrease from their initial
values of 0.5 + 6 to very small values. It can be seen in figure 10(a) that the first increase
in activity occurs at locations that correspond to the “city clusters” C-D-H and A-E-I-J. This
result occurs because the small distances between the cities within each cluster generate less
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(b) Example 2.

Figure 7. Initializations of network before solving TSP and two examples of 10-city problems with cities randomly

distributed on a unit square.

inhibition between the units at the corresponding locations. During the convergence of the
network, multiple choices are considered simultaneously before the network eventually locks into
a particular solution. Figure 10 gives an intuitive feeling for the meaning of the term parallel
distributed processing that is used by some researchers as a synonym for neural computing
(Rumelhart, McClelland, and PDP Research Group 1986).

4. Performance Assessment

The performance assessment would not be an issue if the network simply found the global
solution all the time. In fact, this would imply a solution to the NP-completeness problem.
However, we have already seen that the network converges to local minima and usually produces
good but suboptimal solutions. Then the question becomes how good is good? and the need for
a performance measure arises. One obvious measure of performance is, of course, the resulting
cost value after convergence, given that the network converged to a valid solution. For the TSP,
this is simply the distance of the tour, and the smaller the distance the better the network
performs. Unfortunately, the performance of a given network varies considerably for different
problem instances (data sets), for different problem sizes, for different network parameters,
and, in the case of the TSP, also for different initializations of the network. This variation
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Figure 8. Different solutions of 10-city problem in figure 7(a) after different initializations of network.
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Figure 9. Different solutions of 10-city problem in figure 7(b) after different initializations of network.
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Figure 10. Time evolution of output values of network solving 10-city problem of figure 7(b). Note that solution is
identical to figure 9(a) although it is encoded by a different output matrix.

impedes a meaningful, general performance assessment if only one or two example problems are
considered, because it is always possible to fine tune the network parameters for a particular
problem instance.
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Therefore, it is necessary to generate a representative number of examples that allow a
statistically meaningful statement to be made about the average performance. Furthermore,
some reference frame is needed for the comparison of the network results because just the average
over the cost values is generally not sufficient. For example, the average of the tour lengths of
100 different TSP city distributions is not significant unless the problem size is constant and
the statistical distribution of the input data (city coordinates) is known. The simplest reference
for a comparison is the average cost value of a random guess, that is, the average or expected
value of the distribution of all possible answers for a particular problem instance. A performance
assessment based on the estimated distribution has led to statements in the literature that, for
example, a solution is approximately among the 108 best out of 4.4 x 1030 possible solutions
(Hopfield and Tank 1985), or that 92 percent of the solutions are among the best 0.01 percent of
all solutions (Tagliarini and Page 1987). Although this gives some impression of the performance,
it can hardly be considered a practical measurement.

The solution needed is a performance measure that can answer the following questions:

1. What is the effect of a parameter variation or a modification of the energy function on the
performance?

2. How good is the solution with respect to the global optimum or (the best known answer)?
3. How does the performance change with problem size?

4. With respect to fault tolerance, how does the performance degrade under the presence of
(simulated) faults?

5. What is the performance difference of two networks solving two different problems; that
is, are there problems that are “easier” for the network to solve?

Our approach to the performance assessment is based on the fact that the distribution of
all possible answers for every instance of an optimization problem can be characterized by two
values, the global optimum (minimum cost) copt and the average cost value cay. With ¢ denoting
the cost value of a given result derived by the network, the relation between c, copt, and cay can
be used as a performance measure. By mapping those absolute values onto a normalized scale
as illustrated in figure 11, we define the solution quality q as

q = Cav c (25)
Cav — Copt

Thus, the solution quality has a value g = 1 if ¢ = copt and ¢ =0if ¢ = cay, with 0 < g < 1 for
Cav >c> Copt.

Obviously, the calculation of q requires the knowledge of the two reference values copt and
cav for each problem instance (e.g., for each city distribution of the TSP). Obtaining values for
cav is usually no problem since it requires only a sufficient number of random trials. In case
of the TSP, for example, a random but valid tour is generated repeatedly and the resulting
tour lengths are averaged to obtain cay. The fact that we have to know the global optimum
Copt appears to be a paradox at first glance, and one might ask why we would use an ANN
to solve a problem for which the best possible solution is already known. The answer is, of
course, that we want to test the network by using well-known model problems, and for such
a test it is reasonable to compare the results of a new method (i.e., ANN’s) with the results
of the best existing method. In fact, in almost all cases, where ANN’s have been applied to
optimization problems, there are conventional algorithms readily available to provide values for
Copt- For NP-complete optimization problems like the TSP, for which the global optimum is
generally unknown, the best available heuristic method like the Lin-Kernighan algorithm can be
used as a reference. (See Lin and Kernighan 1973.) If ¢pt is not the global optimum and if the
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Figure 11. Definition of solution quality ¢ by mapping absolute values of ¢, Copt, and cay onto normalized scale.

network happens to generate a better answer, then the event ¢ < copt is reflected by a solution
quality ¢ > 1. Conversely, the value for ¢ becomes negative if the solution of the network is
worse than the random average (¢ > cav). Thus, the normalized solution quality is independent
of a particular problem instance and of the problem size.

In the following discussion we will demonstrate the use of the defined solution quality to
assess and compare the performance of the two model problems, the TSP and the AP. In order
to get statistically relevant results for the TSP, we generated a test set containing 10 different
city distributions for each problem size (n = 10, 20, and 30) and 5 different distributions for
n = 50 and 100. Each city distribution was generated by placing the cities randomly on a unit
square according to a uniform probability distribution. The values for cay were obtained by
averaging over 10° random trials for each city distribution. The Lin-Kernighan (1973) algorithm
was used to generate five answers for each city distribution, and the best result was chosen as copt -
After obtaining the values for cay and copt for each city distribution, it is possible to calculate
the solution quality g according to equation (25) after each simulation run of the network. Since
the network performance varies considerably for different random initializations, 10 different
initializations were used for each city distribution of n =10 to 50, and 5 initializations for
n = 100. Thus, a single sweep through the test set requires 375 simulation runs, and the value
of g was calculated after each run. The average values of ¢ are shown in table 1 for different
approaches and problem sizes.

The possibility also exists that the network will not converge at all to a valid solution because
it has gotten stuck in a local minimum (spurious attractor) that does not correspond to a
permutation matrix. Since this event is not reflected by the solution quality, we also show in
table 1 the proportion of runs with valid solutions. The average value for g includes only runs
that produced valid solutions. In an attempt to recreate Hopfield and Tank’s (1985) original
results, we performed a run of the test set using their original equations (egs. (22)-(24)) with
the parameters A = B = 500, C = 200, D = 500, A = 25, and us = 0 as described. Furthermore,
Hopfield and Tank used an additional constant term for the external current according to
Ix; = C(n+5) = 200n + 1000, which effectively shifts the transfer function. They also used
the initialization (Vy;);—q = (1/n) + 6, where § is a small random number.
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Table 1. TSP Values of Solution Quality (g) for Different Approaches and Problem Sizes

[Proportions of valid solutions are given in parentheses]

Different approaches ' Values of g for problem sizes (number of cities) of —
using TSP n =10 n =20 n=230 n = 50 n = 100

Original method of Hopfield |  0.905 0.903 0.851

and Tank (1985) . . . . (0.15) (0.11) (0.02) )
Modified method of Brandt 0.829 0.816 0.830 0.852 0.902

etal. (1988) . . . . .. (1.00) (1.00) (1.00) (1.00) (1.00)
Different parameters of Brandt 0.936 0.926 0.923 0.913 0.927

etal (1988) . . . . .. (0.98) (0.97) (0.84) (0.58) (0.18)

The equations of motion (eq. (24)) were solved by Euler’s method with time steps At between
107% and 1076, A larger At can cause numerical errors and results that do not reflect the actual
behavior of the system. The first row in table 1 shows the results of our simulation that confirm
the reported difficulties (Wilson and Pawley 1988; Hedge, Sweet, and Levy 1988; Brandt et al.
1988) in using Hopfield and Tank’s original equations. Even for n = 10 cities, only 15 percent
of the runs converged to a valid solution, and since none of the 50-city cases produced a valid
answer, we did not even attempt to solve a 100-city problem.

Although we experimented extensively with parameter variations, we did not find a set of
parameters that improves the performance significantly. However, it is possible to fine tune the
parameters for one particular city distribution to obtain quite impressive results. Unfortunately,
the same parameters usually produce invalid or poor results for other city distributions. This
characteristic has led to some confusion in the literature with performance claims based on
specific examples that were difficult to reproduce and were not valid in general. (See Wilson and
Pawley 1988.) This also demonstrates the importance of an average performance assessment
over many examples. Since Hopfield and Tank’s original equations (egs. (22)-(24)) are not the
only way to express the problem, we tried different modifications (Protzel, Palumbo, and Arras
1989; Protzel 1990) and obtained the best results with the approach published by Brandt et al.
(1988) that is described in section 3.3. By using Brandt’s energy equation (19) and his original
parameters A= B =2,C =4, D=1, A =2.5, and us = 0.5, we obtained the results shown in
the second row of table 1. An additional difference of Brandt’s approach is an initialization in the
center of the hypercube with (Vx;);—g = 0.5 + 6 and a random variable § uniformly distributed
in the range —107% < 6§ < 10~6. Because of the lower gain and smaller values of the parameters,
we could use the value At = 0.1 to solve the equations of motion (eq. (21)).

As shown in the second row of table 1, this modified energy function produced consistently
valid tours across the full range of problem sizes. However, the average solution quality was lower
than the valid cases of Hopfield and Tank’s results. We tried different parameters for Brandt’s
energy equations to improve the quality. The results for A = B =5, C = 2, and D = 3 are listed
in the third row of table 1. The parameters for the transfer function and the initialization are
the same as in the previous case, except that we used At =5 x 1073. We can see that the
average quality has indeed been improved, but at the price of occasional invalid answers whose
frequency increases with the problem size. There is a fundamental trade-off between obtaining
consistently valid (but sometimes poor) answers for a large number of different problem instances
and very good answers for a small number of instances. One obvious and extreme case of this
trade-off is setting D = 0, which cancels the cost function and reduces the problem to pure
constraint satisfaction. Then, we would always expect valid answers, but with an average quality
of ¢ = 0. The underlying problem with the TSP is the quadratic cost function that maps the
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problem-specific distance values multiplied by the parameter D onto the connections, where they
are added to the values that enforce the constraints as in equations (20) or (23). Qualitatively
speaking, large distance values in an extreme problem case or a large factor D might override
the connectivity values that enforce the constraints and thus interfere with the convergence to
a valid solution.

This problem does not occur with the assignment problem because the energy function for the
AP (Hopfield 1982) maps the problem-dependent cost values to the external current (eq. (15))
and not to the connection values. This is actually the only difference between the AP and the
TSP networks, as far as the architecture is concerned, and it makes a performance comparison
between the problems especially interesting. As before, we generated a test set of 10 problem
instances for each size of 10, 20, 30, 50, and 100 elements. The cost values were randomly
generated with a uniform distribution between 0 and 1. The AP as defined here is not an NP-
complete problem, and relatively simple and fast algorithms exist that find the global solution.
We used such a textbook algorithm (Syslo, Deo, and Kowalik 1983) to obtain values for copt
and generated the average values cay from 10° random solutions for each problem instance. The
first Tow of table 2 shows the simulation results for the parameters originally used by Brandt
et al. (1988) with the additional values A = 2.5, us = 0.5, At = 0.05, and the initialization
(uxi);=p = 0. The other two rows show the effect of parameter modifications, and here the
values A = 25, ug = 0, and At =5 x 10~% were used with the same initialization. As discussed
in section 3.2, no random bias in the initial values is required for the AP; in fact, the network
converges to the same solution despite some small random noise. This simplifies the performance
assessment considerably because we now need only one simulation run for each problem instance.

A comparison between tables 1 and 2 reveals a striking difference between the TSP and the
AP results. For the AP, none of the runs failed to converge to a valid tour, and moreover the
solution quality is excellent. For the parameter sets 2 and 3 in table 2, the network actually
found the global optimum in most cases or generated an answer extremely close to it. We can
conclude that the encoding of the cost values by the external current is the cause for the enormous
performance improvement because, unlike with the TSP, the cost values do not interfere with
the connection values that enforce the constraints. Thus, the distinction between a quadratic
and a linear cost function becomes an important classification that helps to identify problems
that are more suitable to an ANN implementation. The demonstrated ability to compare the
results of two different optimization problems proves the versatility of the solution quality as a
performance index and justifies the additional effort needed to obtain values for copt and cay.

Table 2. AP Values of Solution Quality (g) for Different Parameters and Problem Sizes

[Proportions of valid solutions are given in parentheses]

Parameter Values of g for problem sizes (number of elements) of—
set Parameter n=10 n=20 n =30 n =250 n =100

1 A=B=2 C=2 D=1 0.988 0.960 0.975 0.978 0.987

(1.0) (1.0) (1.0) (1.0) (1.0)

2 A=B=200, C=20, D=50 1.0 0.999 0.999 0.998 0.998

(1.0} (1.0) (1.0) (1.0) (1.0)

3 A=B=200,C=3, D=50 1.0 0.999 1.0 1.0 0.999

(1.0) (1.0) (1.0) (1.0) (1.0)

Another aspect to the comparison between optimization networks and conventional algo-
rithms is the time it takes to solve a problem of a particular size. For example, it takes more
than 1 day of processing time on a VAX-11/780 (manufactured by Digital Equipment Corpo-
ration) to simulate the neural network solving a single 100-city problem. This is actually not

23



surprising because the simulation involves the numerical solution of 104 ODE’s for several thou-
sand iterations. However, the Lin-Kernighan algorithm provides an answer (usually better) in
about 3 minutes. IFurthermore, 100 cities are not even considered an interesting problem size
for the TSP. Although an analog hardware implementation of the neural network might solve
the same problem in milliseconds, the need for a very large-scale integrated (VLSI) chip with
10? operational amplifiers to solve a 100-city TSP is truly questionable. Thus, we do not think
that large-scale, classical or NP-complete optimization problems are suitable applications for
optimization networks other than as examples or model problems. However, there are certain
small-scale, special-purpose, real-time control problems that could benefit from the key charac-
teristics of an ANN hardware implementation: e.g., speed, low weight and power consumption,
and built-in fault tolerance.

Thus, our actual objective is not to compete with conventional methods in solving classical
optimization problems but to investigate the fault tolerance of the network for special-purpose
applications. The above performance assessment is a prerequisite for this investigation. In the
next section, we still use the TSP and AP as model problems to demonstrate and to quantify
the performance degradation under the presence of simulated faults in the network. Section 6
then describes an application in which an optimization network controls the reconfiguration of
a multiprocessor system. There, the fault tolerance of the network is the decisive factor for the
operation of the system. )

5. Fault Tolerance

Fault tolerance is a qualitative, general term defined as the ability of a system to perform its
function according to the specification in spite of the presence of faults in its subsystems. This
definition is very unspecific, and a system that is said to be fault tolerant does not necessarily
tolerate any number of faults of any kind in any of its subsystems. A specific way to quantify
fault tolerance is to determine the performance degradation in the presence of certain faults in
certain subsystems, given that some measure of performance exists.

Only relatively few studies in the literature focus explicitly on the fault tolerance of ANN’s,
and the results are difficult to generalize because of the different models and objectives. For
example, Hinton and Shallice (1989) injected faults into a neural network trained to perform a
particular linguistic task. They showed that the performance degradation of the network bears
a qualitative resemblance to the degraded ability of neurological patients with a_certain brain
disorder. Petsche and Dickinson (1990) used a special network architecture to investigate a
self-repair mechanism that automatically activates spare nodes (neurons) if one of the nodes
is inoperable, i.e., permanently inactive {“stuck at 0”). A study that is more closely related
to our approach was performed by Belfore and Johnson (1989) who also investigated the effect
of faults in an optimization network that solves the TSP. However, they used only a single
six-city distribution with single-node faults in their simulations, which is insufficient to draw
any statistically meaningful conclusion as we will show below.

According to figure 1, there are only two different components in a hardware implementation
of an optimization network: the neuron or active element in the form of an operational amplifier,
and passive interconnections in the form of resistors. In the following, we will first consider two
types of faults of the active elements that correspond to the highest failure rate. These are
commonly called stuck-at-1 or stuck-at-0 faults and occur if the output of a unit (amplifier) is
permanently pulled to the highest potential or to the lowest (ground) potential, respectively.
The fault locations are randomly selected with one important exception: we do not allow two
stuck-at-1 faults to occur within the same row or column. The reason is that such an event
would automatically preclude a valid solution since the permutation matrix allows only one 1 in
each row and column. In simulating multiple faults, we study a succession of either stuck-at-1
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or stuck-at-0 faults, but not a mixture of both types. We use the same locations for stuck-at-1
and stuck-at-0 faults in order to compare the effect of a different fault type. Otherwise, it would
not be possible to tell whether different results are caused by the different locations or by the
different fault types. This means that the above exception is also valid for stuck-at-0 faults,
although two or more stuck-at-0 faults in the same row or column do not necessarily interfere
with a valid solution.

Before we present the results of our large-scale simulations, we want to illustrate the impact
of stuck-at-1 faults for several examples. Figures 12 and 13 use the same 10-city TSP examples
from section 3.3 to show the effect of 4 stuck-at-1 faults simultaneously present in the network.
It can be seen that the networks still converge to a solution; however, the resulting tour is clearly
worse than in the fault-free cases of figures 8 and 9. In order to understand these results, it is
necessary to recall the definition of a fault in this context. Since we interpret the neuron output
as a decision about the position of a city on a tour, a stuck-at-1 fault represents such a decision
and thereby predetermines a part of the overall tour. Because of the degeneracy of the TSP
problem representation, a single stuck-at-1 fault does not constrain the network at all since the
absolute position of a city does not matter. The effect of two simultaneous faults is immediately
obvious if the two faults occur in adjacent columns. As shown in figures 12(a) and 13(a), such
an event predetermines a link between two cities because the cities are in successive positions
on the tour. Figures 12(b) and 13(b) show how this imposed link affects the overall tour.

Surprisingly, this predetermination of parts of a tour by the injected faults does not necessarily
lead to a performance degradation. Since the network usually finds a suboptimal solution in
the fault-free case, it is conceivable that a lucky combination of fault locations leads to a tour
that is actually better than one without any faults. Although these events are rare, we could
observe occasional improvements under the presence of multiple faults. Stuck-at-0 faults play a
less prominent role because they only preclude a city from being in a certain position instead of
predetermining it. Thus, the network has even more ways to “work around” those faults, and
we would expect a minimal impact from even multiple stuck-at-0 faults.

Figure 14 shows the effect of injected stuck-at-1 faults on a network solving the assignment
problem. The parameters used for this example are those listed in table 2 (in parameter set 2).
The solution shown in figure 14(a) represents the global optimum. Thus, if the best answer is
derived under fault-free conditions, any fault can only decrease the performance. Because the
AP representation does not have the degeneracy like the TSP, even a single stuck-at-1 fault
precludes a convergence to the global solution. Figures 14(b)—(f) illustrate how the multiple-
fault locations marked by the shaded squares become part of the solutions and how the network
converges to accommodate these constraints.

We analyzed the network solutions in figures 14(b)—-(f) by using our conventional algorithm
and by taking the faults into account as additional constraints to the problem. Interestingly,
the network arrived at the same results, which means that it still found the new global
optimum under these fault conditions. Thus, we could define a conditional performance measure
by viewing the faults as constraints to the problem and assessing the network performance
accordingly. Although we can see the obviously unavoidable performance degradation in absolute
terms, the conditional performance of the AP network is still optimal. As with the TSP,
stuck-at-0 faults preclude a particular solution and have no effect at all unless the fault location
coincides with an active unit that is part of the solution; in this case, the network treats the
fault as an additional constraint and converges to the best possible solution.

Although the above examples provide some (qualitative) insight into the fault-tolerance
characteristics, it is still necessary to substantiate this impression by large-scale simulations
in order to obtain more rigorous results. We used the test set of problem instances as defined
in the last section and the same parameters that correspond to the results in the second row
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Figure 12. Solution of 10-city problem in figures 7(a) and 8 by network with 4 stuck-at-1 faults (tour length
of 3.27). Fault locations are visible during initialization in part (a). Note that the two faults in adjacent

columns predetermine a link between cities B and D.

of tables 1 and 2. Only these parameter values were used for the TSP because we regard
the consistent convergence to a valid solution in the fault-free case as a prerequisite for any
fault-injection experiments. Figure 15 shows the results for different problem sizes. The results
confirm our conjecture that stuck-at-0 faults have no effect for the AP and practically no effect
for the TSP. In case of the TSP, the injected faults override the random initialization and the
network converges without or independent of any initial bias to the same solution. Stuck-at-1
faults result in an almost linear performance degradation for the AP, whereas the redundancy
of the TSP representation is reflected in a relatively slower performance decrease as the number
of faults increases. When the number of stuck-at-1 faults approaches the number of cities or
elements, the performance for both the TSP and the AP approaches zero as in figure 15(a),
which corresponds to the random average. This is because the randomly selected fault locations
eventually predetermine a random tour. Most importantly, none of our simulations failed to
converge to a valid tour because of one or more injected faults.

In another experiment, we studied the effect of connection faults on the performance of an
optimization network. Although the failure rate of a simple resistive connection is orders of
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Figure 13. Solution of 10-city problem in figures 7(b) and 9 by network with 4 stuck-at-1 faults (tour length
of 3.77). Fault locations are visible during initialization in part (a). Note that the two faults in adjacent

columns predetermine a link between cities B and D.

magnitude less than that of an operational amplifier, the large number of connections (e.g.,
2n3 — 2n? connections for an n-element AP compared with n? neurons) increases the overall
probability of such a fault. The failure of a connection with the resistance R leads either to a
short circuit (R = 0) or to an open connection (R = 00). Because the failure rate of a connection
short circuit is far less than the rate of an open connection, we simulated only the latter fault
type. In order to limit the number of required simulations, we used only a network solving the
AP for this experiment because this network exhibited the best performance and greatest fault
tolerance in our previous studies.

Figure 16 shows the resulting performance degradation of an ANN solving a 10-element AP
for up to 50 simultaneous open connections. The parameters for the AP network are the same
as in the previous fault-injection runs. The locations for the connection faults were randomly
selected. For each fault scenario we ran 50 different problem instances, and figures 16(a) and (b)
show the average, worst, and best performance for the two different values of the parameter
D =50 and D = 120. The parameter D is a factor multiplied by the cost values according to
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(d) Three stuck-at-1; ¢ = 310. (e) Four stuck-at-1; ¢ = 361. (f) Five stuck-at-1; ¢ = 381.

Figure 14. Effect of up to five multiple stuck-at-1 faults on network solving assignment problem of size n = 7. Cost
matrix is shown with circled elements indicating network solutions (neurons that converged to 1) and shaded
squares indicating fault locations. Note that parts (b)--(f) are still optimal solutions under additional constraints

imposed by faults.

equation (15), and a large value of D enforces solutions with better quality. This is reflected by
figure 16(b) which shows a better average quality as well as a lower variation in the quality of
the best and worst solutions compared with figure 16(a). This high variation in figure 16(a) is
again a reminder of how much the results depend on the chosen problem instance and that the
study of a single instance as in Belfore and Johnson (1989) can lead to grave misinterpretations.

Although the performance results suggest that a higher value of D would be desirable, there
is a trade-off shown in figure 16(c). Surprisingly, although none of the “stuck-at” faults led to
an invalid solution, we do observe invalid solutions for some problem instances after a certain
number of open connections. Figure 16(c) shows the percentage of valid solutions, and it can
be seen that a lower value of D tolerates more faults before the first case of an invalid solution
occurs. We have already seen this trade-off between consistently valid and high-quality solutions
in the fault-free cases of section 4, and it is very interesting to observe that the same effect plays
an important role with respect to the fault tolerance. Because an invalid solution is the worst
case and equivalent to a total system failure, a smaller value! of D is obviously preferable for the
AP, especially since it does not affect the fault-free performance at least for the cases shown in
figures 16(a) and (b). However, for a value of D > 120, we could also observe some invalid results

4 Unfortunately, these qualitative recommendations about the relative size of parameter values do not necessarily hold
in general. Since no theory exists to prescribe parameter values for optimization networks, optimal values have to be
determined experimentally for each problem.
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in the fault-free case. This shows that the “quality-validity trade-off” is a general phenomenon
and that connection faults only increase the likelihood of invalid solutions.

In summary, we have demonstrated that optimization networks exhibit a surprising degree
of fault tolerance which is achieved without the explicit use of redundant components. Because
the fault-tolerance characteristics are inseparable from the functional characteristics, we can say
that the fault tolerance of the ANN is built-in or inherent. However, when we make a statement
about the fault tolerance, we implicitly assume a failure condition or failure criterion of the
system, which is the threshold below which it can no longer perform its function according
to the specification. For example, consider the AP network that always generates the global
optimum under fault-free conditions. If we specify this as the only acceptable performance level,
then any stuck-at-1 fault that causes the network to generate a good but suboptimal answer is
not acceptable and, with respect to this fault type, the network is not fault tolerant at all. On
the other hand, if we specify a solution quality of 0.8 as the acceptable performance threshold,
then an AP network of size n = 30 can tolerate (on the average) five stuck-at-1 faults and an even
larger number of stuck-at-0 or connection faults. Thus, the degree of fault tolerance depends on
our definition of acceptable performance.

The above discussion suggests an application domain for optimization networks where it is
not necessarily important to generate the best possible solution to an optimization problem, but
where a reasonably good answer has to be obtained fast and reliably. In the next section we
present an example of such an application with the network performing a critical real-time task
as a component of a fault-tolerant multiprocessor system.

6. Application of an ANN for the Task Allocation in a Distributed
Processing System

In the following discussion we will investigate the application of an optimization network in
the context of a distributed processing system that operates under hard real-time constraints
and has to meet very high reliability requirements. An example of such a system is the
Software-Implemented Fault-Tolerance (SIFT) computer used by NASA as an experimental
vehicle for fault-tolerant systems research (Palumbo and Butler 1986). The SIFT architecture
can accommodate up to eight processors in a fully distributed configuration with a point-to-
point communication link between every pair of processors. It can be used, for example, to
execute real-time flight control tasks as part of an aircraft control system. Because the system
operates in a distributed fashion, each processor executes a certain number of tasks according
to a predetermined task-to-processor allocation table.

The architecture achieves an extreme fault tolerance by its capability to detect and isolate
possible hardware faults. The isolation of a defective processor requires a reconfiguration of the
system and a reallocation of all tasks among the remaining processors. Thus, it is not the initial
task allocation but the reallocation of tasks after a processor failure that is time critical and has
to be performed by a highly reliable mechanism. The use of lookup tables for the reallocation
has the disadvantage that the number of combinations of tasks and processors is very large
for even moderately sized systems (Bannister and Trivedi 1988) and grows exponentially after
multiple processor failures. Although it is possible to use conventional algorithms to solve the
problem, these methods are often computationally too expensive because of the hard real-time
constraints and require an undesirable overhead because the algorithms have to be executed in
a distributed environment without any hierarchical control.

Since finding that the best allocation of tasks among the processors can be formulated as
a constrained optimization problem, we will demonstrate how an optimization network can be
used to solve this problem. The distributed system considered here resembles a simplified version
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of the SIFT computer and is based on a model described by Bannister and Trivedi (1988) in
which a conventional heuristic algorithm is used to solve this task allocation problem. We will
later use this algorithm as a benchmark to assess the ANN performance. The system has to
execute n tasks and consists of n identical processors. Each task is replicated into r clones that
are executed by different processors and submitted to a majority voter in order to detect and
mask possible hardware failures. By assuming periodic real-time tasks for a typical flight control
system, the number of instructions per execution of task j, the frequency of execution, and the
execution rate of the processor determine the load that a certain task places on a processor,
which is called the utilization z; of task j. A particular allocation can be described by a variable
Vij with V; = 1 if task j is scheduled on processor 4, and V;; = 0 otherwise. Then, the variable
p; = ), zjV;; represents the overall load or utilization of processor ¢ under the allocation Vij-
J

The task allocation has to observe the constraint that each task must be executed by exactly
r different processors in order to allow a majority vote. Additionally, the allocation should
be done in a way that achieves at least an approximate load balancing among the processors.
A load balancing in a distributed processing system is obviously desirable, and Bannister and
Trivedi (1988) discuss several reasons why an imbalance potentially decreases the reliability
of the system. They also show that minimizing the sum of the squared processor utilizations
> p,‘2 also minimizes the statistical variance of the p; variables, which is a direct measure of the
2

imbalance. We further assume that there are enough processors to accommodate a (balanced)
assignment without capacity or scheduling violations.

The task allocation problem (TAP) is represented by an optimization network consisting of
a two-dimensional array of m x n neurons or elements in which the output V;; of an element is
bounded between 0 and 1 and corresponds to the hypothesis that task j is assigned to processor 1.
Figure 17 illustrates this problem representation for an example in which 10 triplicated tasks
are allocated to 5 processors. In order to map the task allocation problem onto the network, it
has to be expressed as a function whose minima correspond to (local) solutions of the problem.
With the above definitions, we can define the following energy function

2

A n m 2 B m n D m n
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The first term in equation (26) has a minimum if the constraint is met (i.e., each task is executed
by exactly r processors), the second term forces the outputs to converge to either 0 or 1, and
the third term represents the cost function to be minimized. Mapping equation (26) onto the
energy function (eq. (12)) yields the following values for the interconnections and the external

current
Tij,lk = —A(Sjk + B‘Sil&jk - Dijk(Sil

B (27)
IU = Ar — E
and the equations of motion
i =_E—A;VU+BV”-
B
— DZ]' sz‘/ik + Ar — E (28)

k
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Figure 17. Example of allocation of tasks to processors generated by optimization network. Note that each task has
to be executed by exactly three different processors while an approximate load balancing of processors should be
achieved.

We used the parameter values A = 75, B = 5, and D = 350 as well as A =25 and ug = 0 for the
transfer function (eq. (1)). Although there are only three parameters, we used D as the third
parameter because we have previously associated D with the cost function of the problem. Our
simulations are performed for different data sets with task utilizations z; randomly generated
from a uniform distribution between 0.01 and 0.10. Because of the quadratic cost function in
equation (26), the cost values z; are part of the interconnections and the external current is
constant. Thus, this problem is similar to the TSP and requires a random initialization to
overcome the unstable equilibrium point at u;; = 0. We used the initial values V;; = 0.5+ 6
with small, uniform noise (—10~7 < 6§ < 1077). The equations of motion (eq. (28)) were solved
by Euler’s method with a step size At = 2 x 10~° and required an average of 5000 iterations to
converge.

At this point, we can simulate the network and successfully solve the TAP as shown in
figure 17 with a performance that is comparable to the TSP network, but this is not the actual
task in this application. What is required is a reallocation of tasks after a processor failure.
Therefore, the network has to be provided with the information about which processor has failed.
Furthermore, it has to implement this information as an additional constraint before solving the
problem. For example, the unavailability of a processor k can be represented by enforcing Vi; = 0
for all tasks j; that is, no tasks can be assigned to processor k. This additional constraint could
be implemented either by external currents of sufficient strength to inhibit all neurons in row k
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or by switches connecting the outputs of all neurons in row & to 0 (ground potential). Although
the latter method seems to be somewhat crude, it actually has the advantage that a possible
stuck-at-1 hardware fault of a neuron in that row is overridden by the external switch. Producing
this short circuit at the outputs is equivalent to our stuck-at-0 fault injections in the last section;
there we showed that the network indeed treats this condition as an additional constraint to the
optimization problem. Figure 18 illustrates the process of reallocation after a processor failure
by using the same example shown in figure 17.
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Figure 18. Example of reallocation of tasks after a processor failure. Optimization network generates new allocations
by observing the constraints and by approximately balancing the load of the processors.

The network is obviously a critical component of the system because a network failure would
prevent the reconfiguration of the system after a processor failure, which leads to a total system
failure. Thus, the fault tolerance of the ANN becomes a crucial characteristic. We tested the fault
tolerance again by simulating stuck-at-0 and stuck-at-1 faults in randomly selected locations.
Figure 19 illustrates the operation and convergence of the network for the example of a system
with m = 7 processors and n = 14 tasks where each task has to be executed by three different
processors (r = 3). Figure 19(a) shows the initialization of the (fault-free) network for a scenario
in which processor 4 has failed, which is reflected by an output value of zero for all neurons in
row 4. Figure 19(b) indicates the result after convergence with tasks 2, 3, and 6 assigned to
processor 1, tasks 3, 5, and 7 assigned to processor 2, etc. The load-balancing performance of
the ANN is also illustrated in figure 19(b) which lists the processor utilizations resulting from
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the ANN solution in comparison with a simple, heuristic reference algorithm (Bannister and
Trivedi 1988). As can be seen from the cost values listed at the bottom, which are the sum of
the squares of the processor utilizations, the ANN is outperformed by the algorithm although
the difference of the values is only of the order of 1 percent. However, as we stated earlier, an
approximate load balancing is sufficient in this case as long as the solution can be obtained fast
and reliably.

1 234567 891011121314 1 234567 891011121314 ANN] Refer
| aseEsEEEESEAEN 1 -  JHEE WE W W 031103306
? sssussENENEE=EN B - B HEEE BN 0351703306
3 s EENSEEEEEESEE S HEEE B B B 033803306
4 4 . - - - - - . - . - . - - - 0.0000]0.0000
s aEnEEsNEEssNEERE s H HE B - HEN 0340803273
'S EER R ERE R RN NN s - - HBE HHE EBE 0320003273
7 aEEEEEEEEENENE 7 AR HE - HBE 0.2912]0.3273
Cost: 0.651510.6493
(a) Initialization of network (no faults) (b) Solution after convergence with resulting processor
utilizations in comparison to reference algorithm.
1234567 891011121314 1 23456 7 891011121314 ANN| Refer
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4 4 - - - - - . . . . < .« - . - 00000]0.0000
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3l EREE LER BN RN c B HE - -  HE 029890327
7 aEmEsENEEEENEESE Il HE B HEER B o3467032713
Cost: 0.657010.6493
(c) Initialization (five stuck-at-1 and (d) Solution after convergence under presence of injected
three stuck-at-0 faults injected into faults.

network).

Figure 19. Tllustration of operation and convergence of network generating a task allocation after failure of processor 4
(m=17 n=14, and r =3).

The latter requirement is illustrated in figure 19(c), which shows the initialization of the
network for the same scenario, but now with eight faults simultaneously present in the network.
The fault locations of five stuck-at-1 and three stuck-at-0 faults are clearly recognizable after the
initialization. Figure 19(d) shows the results after convergence, and we can observe the same
phenomenon that the faults do not impair the convergence but act as additional constraints of
the problem. According to the cost value in figure 19(d), the performance is only slightly worse
than in the fault-free case.

Since the performance of the ANN varies considerably for different random initializations
and different input data, it is necessary to evaluate the average performance over a sufficient
number of problem instances in order to obtain a statistically relevant assessment. We simulated
a system with m = 8 processors and n = 24 triplicated tasks (r = 3), which requires a network of
192 neurons. Seven different test sets of random task utilizations were generated. The network
was simulated with seven different initializations for each test set. The solution quality g was
used to assess the performance where values for copy were obtained from the heuristic algorithm
in Bannister and Trivedi (1988). Figure 20 demonstrates the performance degradation for up to
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eight injected stuck-at-0 or stuck-at-1 faults. The number of processors refers to the remaining
number of available processors in the system. For example, if the distributed system consists
initially of eight processors, then m = 7 refers to the operation of the network after a failure
of one processor with the neurons in the corresponding row switched to zero. Note that the
solution quality in figure 20 is plotted in the small range from 0.75 to 1.00, which magnifies
the variations. As expected, the performance is very similar to the TSP because both use a

quadratic cost function.
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(a) Stuck-at-0 faults. (b) Stuck-at-1 faults.

Figure 20. Performance degradation of ANN allocating n =24 triplicated tasks (r=3) to m =8, 7, and 6

Processors.

The results in figure 20 confirm the qualitative observation in figure 19 that the ANN
exhibits an extreme fault tolerance compared with conventional systems. Since the faults are
randomly located and act as additional constraints of the problem, it is possible that one or more
faults accidentally dictate a better solution than the network would have found without faults.
This explains the occasional performance increase after fault injection and the nonmonotonic
characteristic of the performance degradation. Of course, this is only possible because of the
suboptimal performance of the ANN in the fault-free case. It is also important to note that none
of the simulations converged to an invalid solution or to a solution that violates the capacity
constraint p; < 1, although the latter was not explicitly enforced. An event that would lead to
an invalid solution can occur only if there are more than r stuck-at-1 faults in the same column,
thus assigning a task to more than r processors and violating the constraints. If the faults occur
at random locations and if the failure rate of a stuck-at-1 fault is known for a particular hardware
implementation, then this scenario can be used to estimate an upper bound for the reliability of

the ANN.
7. Concluding Remarks

The objective of our investigation was to explore the fault-tolerance characteristics of a
particular neural network type and to show how these networks might be used in certain critical
applications. First, we described the principle of operation of these networks and showed how
they can be used to solve optimization problems. The operation and the performance of the
network was first illustrated for two examples of classical optimization problems, the assignment
problem and the traveling salesman problem. With an analog hardware implementation of
the neural network in mind, the fault tolerance was simulated by subjecting the “neurons”
implemented as operational amplifiers to multiple “stuck-at-1” and “stuck-at-0” faults.
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We have demonstrated that the fault tolerance is an inherent characteristic of this type of
neural network and that the injected faults are treated by the network as additional constraints
to the problem. Although conventional systems often break down completely after a single fault,
the network exhibits a graceful performance degradation even after multiple injected faults. This
characteristic can be exploited and a fault-tolerant neural network integrated on a single analog
very large scale integrated (VLSI) chip might perform a critical task that would otherwise require
a redundant microprocessor system with specially tested software.

As an example of a promising application, we used the neural network as a critical component
of a fault-tolerant, distributed processing system. The failure of a processor requires a
reconfiguration of the system and a reallocation of all tasks among the remaining processors. This
task allocation has to observe certain constraints and should at least approximately balance the
load of the processors. We showed how a neural network can solve this problem and demonstrated
the robustness of the network by injecting simulated faults. Our results indicate that the network
can indeed perform this task reliably and that even multiple faults do not impair the ability of
the network to generate an answer with only slightly degraded performance. The limit of the
fault tolerance of the network is problem dependent and is determined by certain scenarios of
multiple faults that would lead to a violation of the constraints, such as, for example, more
than three stuck-at-1 faults in the same column. Such fault combinations are explicitly excluded
in our fault-injection experiments since they would obviously preclude a valid solution. With
known failure rates and faults occurring at random locations, these worst-case scenarios can be
used to estimate an upper bound for the reliability of the neural network.

In summary, we think that applications exist for the type of neural network described in
this paper that can take advantage of the speed, low weight, low power consumption, and fault
tolerance of future hardware implementations. However, in most cases, the actual performance
of the network does not reach the performance of the best available, conventional optimization
algorithm. Thus, the neural network approach is best suited to certain real-time applications
that do not necessarily require the absolute best answer, but where it is necessary to generate an
approximate answer fast and reliably. The characteristic of a graceful performance degradation
without additional redundancy is especially interesting for long-term unmanned missions where
component failures have to be expected but no repair or maintenance can be provided.

NASA Langley Research Center
Hampton, VA 23665-5225
February 11, 1992

37



8. Appendix A
Equations of Motion

In this section we will derive the equations that govern the dynamical behavior of the network
shown in figure A1 (which was presented earlier as fig. 1). The symmetry of the network simplifies
the analysis, and it is sufficient to determine the equations for a particular (but arbitrary) unit i.

Figure A2 shows an equivalent circuit diagram for such a unit 7 in which ideal voltage sources
represent the feedback from all other units including unit 7 itself. The nonlinear relationship
Vi = g(u;) between input and output of a unit can be expressed by the sigmoidal function as
described in section 2, but it is not required for the following analysis.

The simple circuit in figure A2 can be analyzed by applying Kirchhoff’s current law

i
i+ L =i +ic (A1)
J=1
and Kirchhoff’s voltage law
i .
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Figure Al. Circuit diagram of optimization network according to Hopfield (1984). Note that negative feedback can
be realized by connecting positive conductances Tj; to negative output —V; of unit (not shown in this figure).
{This figure, which was presented earlier as fig. 1, is repeated here for the reader’s convenience. )}

Solving equation (A2) for ¢; and combining equations (A1) and (A2) results in

n
> (TV; = Tijw) + I = ir +ic (A3)
J=1
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Figure A2. Equivalent circuit diagram of network in figure Al for one particular unit 1.

By substituting the relations i, = u;/r; and i¢ = C(du;/dt) into equation (A3), it follows that

du; |

Ci dt T;

n n
=—wy T+ TV +1h (A4)
=1 j=1

After some final rearrangement, we get the “equations of motion”

n

du;

n
1g Tij + ZTijV} +I; (Ab)
1 j=1

1
T
J
The parallel combination of the input resistance r; and all the conductances 7;; connected to
unit ¢ can be expressed as a single resistance R; with

1 1

7=t 2T (A6)
j=1

The product of R; and C; is often referred to as the time constant 7; of the equivalent circuit

diagram in figure A2. An identical time constant for each unit ¢ would require C; = C and

R; = R for all units i. The latter condition might be difficult to achieve in practice if the

parallel combination of the weights in equation (A6) results in different values for each unit .

In this case, each individual value for 7; would have to be chosen in a way that compensates for

these variations. o

Also of importance is that the time constant 7; describes the convergence of the input voltage
u; of unit 7. Because of the potentially very high gain of the transfer function V; = g(u;), the
output V; might saturate very quickly. Thus, even if the input u; is still far from reaching its
equilibrium point, the output V; might already be saturated; and by observing only V;, it might
appear as if the circuit had converged in merely a fraction of its time constant 7;.
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9. Appendix B
The Energy Function

The stability of the neural network in figure Al can be proven by considering the following
Liapunov or “energy” function:

1ZZ > Zl i _
. 3 A X 1 Jg
i 1 i

With V; = g(u;) denoting the sigmoidal transfer function between input u; and output V; of
element 7, the third term in equation (B1) represents an integral over the inverse of this transfer
function. Two examples of sigmoidal transfer functions, their inverses, and values for the integral
are illustrated in figure B1. For example, with the transfer function

1
Vi= 5[1 + tanh(2Au;)]

and its inverse )
u; = X[arctanh(?Vi - 1)]

the integral term in equation (B1) can be written as

Zi/vi vy dv = lzi/Viarctanh(QV—l)dV (B2)
R Jooy * A R Jos

The integral term in equation (B2) vanishes in the so-called high gain limit with A — oo.
As shown in figure B1(a3), the value of the integral is zero at V; = 0.5 and rises sharply as V;
approaches either 0 or 1. For practical purposes with moderately high gain values A, the integral
term in equation (B2) can be neglected and plays a role only in establishing “energy walls” that
represent the borders of the hypercube in V-space (0 < V; < 1 for all units ).

Sketch A presents a network with two neurons mutually interconnected by negative feedback
(T;; < 0). This is the simplest possible case of an optimization network (n =2) and actually
represents the bistable memory element known as Flip-Flop. This Flip-Flop is used to
demonstrate the shape of the energy function (eq. (B1)), which is shown in figure B2 for different
values of \. If the gain is too small (fig. B2(a)), then the integral term dominates as V; approaches
0 or 1 and prevents the occurrence of minima at the corners of the space. Instead, the system
behaves like a linear system with only one stable equilibrium point at V; = 0.5 (u; =0). In
figure B2(b), two stable states with very shallow minima can be identified because of the higher
gain. Although the gain in figure B2(c) is still relatively small with A = 25, this case already
constitutes the high gain limit. It can be seen that the minima of the energy function are formed
where the descending energy surface meets the wall of the cube caused by the integral term in
equation (B2). Figure B2(c) also illustrates the unstable equilibrium point at V; = 0.5 (u; = 0).
An initialization of the system with identical values for all u; or Vj, respectively, leads to a
movement to the unstable point at the center.

In order to prove the stability of the network, it is necessary to show that the energy
function of equation (B1) is indeed a Liapunov function for the system. The time derivative of
equation (B1) can be calculated using the chain rule

dE OFE dV;

= - L B
dt ~ <=9V, dt (B3)
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with

Uu;

oF 1
3—W=—§Z(ﬂj+73i)vj—fz‘+jfi (B4)
J

The following steps of the proof require that the condition T;; = T}; be met. Thus, assuming a
symmetric connectivity, equation (B3) can be written as

dE dv; u;
@l "Iy (8)
i j
The term in parentheses in equation (B5) is identical to the negative right-hand side of the
equations of motion of the network
du; u;
CiEf—z—E+ZTijV}+I,- (B6)
J
By substituting equation (B6) into equation (B5), we can write

dE 3 dV; du;
Vi dui

PR BT (B7)

With the relation dV;/dt = (dV;/du;)(du;/dt), it follows from equation (B7) that
dE dv; (du;\?
=== — | = B
dt Xi:@ du; (dt) (B8)

Assuming that the transfer function is monotonically increasing (dV;/du; > 0) and with C; > 0,
each term in the sum of equation (B8) is nonnegative. Thus,

dE

— < B

T 0 (B9a)
and IE

— =10 B9b
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Figure B1. Illustration of two different sigmoidal transfer functions V; = g(u;), their inverse functions u; = g~ 1(V;),
and their integrals for different values of gain A.
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Figure B2. Plot of energy function according to equation (B1) for “Flip-Flop” in sketch A. T;; = —2; L=Lrmn=1
C; = 1; transfer function as shown in figure Bi(al).
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when du;/dt = 0 for all units . Since the energy equation (B1) is bounded, equation (B9)
implies that equation (B1) is a Liapunov function for the system equation (B6). This means
that any time evolution of the system decreases the energy equation (B1) by moving to a local
energy minimum at which point the motion of the system stops.
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